The apocalyptic tropes of “climate science” are based entirely on computer models (just like the many millions doomed “the coronavirus,” and the pathogen itself)

The Profound Junk Science of Climate

By: Norman Rogers

Climate change prophecy hangs its hat on computer climate models. The models have gigantic problems. According to Kevin Trenberth, once in charge of modeling at the National Center for Atmospheric research, [none of the] “models correspond even remotely to the current observed climate” [of the Earth]. The models can’t properly model the Earth’s climate, but we are supposed to believe that if carbon dioxide has a certain effect in the imaginary Earths of the many models it will have the same effect on the real earth.

The climate models are an exemplary representation of confirmation bias, the psychological tendency to suspend one’s critical facilities in favor of welcoming what one expects or desires. Climate scientists can manipulate numerous adjustable parameters in the models that can be changed to tune a model to give a “good” result. Technically, a good result would be that the climate model output can match past climate history. But that good result competes with another kind of good result. That other good result is a prediction of a climate catastrophe. That sort of “good” result has elevated the social and financial status of climate science into the stratosphere.

Once money and status started flowing into climate science because of the disaster its denizens were predicting, there was no going back. Imagine that a climate scientist discovers gigantic flaws in the models and the associated science. Do not imagine that his discovery would be treated respectfully and evaluated on its merits. That would open the door to reversing everything that has been so wonderful for climate scientists. Who would continue to throw billions of dollars a year at climate scientists if there were no disasters to be prevented? No, the discoverer of any flaw would be demonized and attacked as a pawn of evil interests. Richard Lindzen and Roy Spencer come to mind. There are many more skeptical scientists keeping quiet in varying degrees.

Testing a model against past history and assuming that it will then predict the future is a methodology that invites failure. The failure starts when the modeler adds more adjustable parameters to enhance the model. At some point one should ask if we are fitting a model or doing simple curve fitting. If the model has degenerated into curve fitting, it very likely won’t have serious predictive capability.

A strong indicator that climate models are well into the curve fitting regime is the use of ensembles of models. The International Panel on Climate Chnge (IPCC) averages together numerous models (an ensemble), in order to make a projection of the future. Asked why they do this rather than try to pick the best model, they say that the ensemble method works better. Why would averaging worse models with the best model make the average better than the best? This is contrary to common sense. But according to the mathematics of curve fitting, if different method of fitting the same (multidimensional) data are used, and each method is independent but imperfect, averaging together the fits will indeed give a better result. It works better because there is a mathematical artifact coming from having too many adjustable parameters that allow the model to fit nearly anything.

Click on the link for the rest.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.